SAT CollegeBoard Practice Test (1-8) Equation

$\def\frac{\dfrac}$
1. (Test1/Q 1/No Calculator)

If $\frac{x-1}{3}=k$ and $k=3$, what is the value of $x$ ?
A) 2
B) 4
C) 9
D) 10



2. (Test1/Q 8/No Calculator)

If $\frac{a}{b}=2$, what is the value of $\frac{4 b}{a}$ ?
A) 0
B) 1
C) 2
D) 4



3. (Test1/Q 16/No Calculator)

If $t>0$ and $t^{2}-4=0$, what is the value of $t$ ?





4. (Test2/Q 1/No Calculator)

If $5 x+6=10$, what is the value of $10 x+3$ ?
A) 4
B) 9
C) 11
D) 20



5. (Test2/Q 5/No Calculator)

$$ \sqrt{2 k^{2}+17}-x=0 $$ If $k>0$ and $x=7$ in the equation above, what is the value of $k$ ?
A) 2
B) 3
C) 4
D) 5



6. (Test $3 / \mathrm{Q} 2 /$ No Calculator)

If $3 r=18$, what is the value of $6 r+3$ ?
A) 6
B) 27
C) 36
D) 39



7. (Test $3 / Q 5 /$ No Calculator)

If $\frac{5}{x}=\frac{15}{x+20}$, what is the value of $\frac{x}{5}$ ?
A) 10
B) 5
C) 2
D) $\frac{1}{2}$



8. (Test $3 / \mathrm{Q} 16 /$ No Calculator)

$$ x^{3}\left(x^{2}-5\right)=-4 x $$ If $x>0$, what is one possible solution to the equation above?





9. (Test3/Q $17 /$ No Calculator)

If $\frac{7}{9} x-\frac{4}{9} x=\frac{1}{4}+\frac{5}{12}$, what is the value of $x ?$





10. (Test $3 / Q 7 /$ Calculator)

If $\frac{3}{5} w=\frac{4}{3}$, what is the value of $w$ ?
A) $\frac{9}{20}$
B) $\frac{4}{5}$
C) $\frac{5}{4}$
D) $\frac{20}{9}$



11. (Test $4 / Q 6 /$ No Calculator)

If $\frac{a-b}{b}=\frac{3}{7}$, which of the following must also be true?
A) $\frac{a}{b}=-\frac{4}{7}$
B) $\frac{a}{b}=\frac{10}{7}$
C) $\frac{a+b}{b}=\frac{10}{7}$
D) $\frac{a-2 b}{b}=-\frac{11}{7}$



12. (Test4/Q 9/No Calculator)

$$ \sqrt{x-a}=x-4 $$ If $a=2$, what is the solution set of the equation above?
A) $\{3,6\}$
B) $\{2\}$
C) $\{3\}$
D) $\{6\}$



13. (Test4/Q 10/No Calculator)

If $\frac{t+5}{t-5}=10$, what is the value of $t$ ?
A) $\frac{45}{11}$
B) 5
C) $\frac{11}{2}$
D) $\frac{55}{9}$



14. (Test5/Q 5/No Calculator)

$$ \sqrt{k+2}-x=0 $$ In the equation above, $k$ is a constant. If $x=9$, what is the value of $k$ ?
A) 1
B) 7
C) 16
D) 79



15. (Test5/Q $17 /$ No Calculator)

$$ 2(p+1)+8(p-1)=5 p $$ What value of $p$ is the solution of the equation above?





16. (Test5/Q 4/Calculator)

If $3(c+d)=5$, what is the value of $c+d$ ?
A) $\frac{3}{5}$
B) $\frac{5}{3}$
C) 3
D) 5



17. (Test5/Q 33/Calculator)

Note: Figure not drawn to scale. On $\overline{P S}$ above, $P Q=R S$. What is the length of $\overline{P S}$ ?





18. (Test6/Q 9/No Calculator)

If $\sqrt{x}+\sqrt{9}=\sqrt{64}$, what is the value of $x$ ?
A) $\sqrt{5}$
B) 5
C) 25
D) 55



19. (Test $6 / Q 13 /$ No Calculator)

$$ 2 x^{2}-4 x=t $$ In the equation above, $t$ is a constant. If the equation has no real solutions, which of the following could be the value of $t$ ?
A) $-3$
B) $-1$
C) 1
D) 3



20. (Test6/Q 17/No Calculator)

$$ \frac{2}{3} t=\frac{5}{2} $$ What value of $t$ is the solution of the equation above?





21. (Test $6 / \mathrm{Q} 32 /$ Calculator)

$$ 2(5 x-20)-(15+8 x)=7 $$ What value of $x$ satisfies the equation above?





22. (Test7/Q $16 /$ No Calculator)

If $2 x+8=16$, what is the value of $x+4$ ?





23. (Test7/Q 6/Calculator)

In the equation $(a x+3)^{2}=36, a$ is a constant. If $x=-3$ is one solution to the equation, what is a possible value of $a$ ?
A) $-11$
B) $-5$
C) $-1$
D) 0



24. (Test8/Q 1/No Calculator)

$$ 3 x+x+x+x-3-2=7+x+x $$ In the equation above, what is the value of $x$ ?
A) $-\frac{5}{7}$
B) 1
C) $\frac{12}{7}$
D) 3



25. (Test8/Q 16/No Calculator)

$$ x^{2}+x-12=0 $$ If $a$ is a solution of the equation above and $a>0$, what is the value of $a$ ?





26. (Test $8 / Q 8 /$ Calculator)

$$ x+1=\frac{2}{x+1} $$ In the equation above, which of the following is a possible value of $x+1$ ?
A) $1-\sqrt{2}$
B) $\sqrt{2}$
C) 2
D) 4



27. (Test8/Q $32 /$ Calculator)

$x-\frac{1}{2} a=0$ If $x=1,$ in the equation above, what is the value of $a$?





28. (Test3/Q 28/Calculator)

In planning maintenance for a city's infrastructure, a civil engineer estimates that, starting from the present, the population of the city will decrease by 10 percent every 20 years. If the present population of the city is 50,000 , which of the following expressions represents the engineer's estimate of the population of the city $t$ years from now?
A) $50,000(0.1)^{20 t}$
B) $50,000(0.1)^{\frac{t}{20}}$
C) $50,000(0.9)^{20 t}$
D) $50,000(0.9)^{\frac{t}{20}}$



Answer

1 D $\quad$ Explanation
2 C $\quad$ Explanation
3 2 $\quad$ Explanation
4 C $\quad$ Explanation
5 C $\quad$ Explanation
6 D $\quad$ Explanation
7 C $\quad$ Explanation
8 1,2 $\quad$ Explanation
9 2 $\quad$ Explanation
10 D $\quad$ Explanation
11 B $\quad$ Explanation
12 D $\quad$ Explanation
13 D $\quad$ Explanation
14 D $\quad$ Explanation
15 1.2 $\quad$ Explanation
16 B $\quad$ Explanation
17 7 $\quad$ Explanation
18 C $\quad$ Explanation
19 A $\quad$ Explanation
20 3.75 $\quad$ Explanation
21 31 $\quad$ Explanation
22 8 $\quad$ Explanation
23 C $\quad$ Explanation
24 D $\quad$ Explanation
25 3 $\quad$ Explanation
26 B $\quad$ Explanation
27 2 $\quad$ Explanation
28 D $\quad$ Explanation

Post a Comment

أحدث أقدم