$\def\frac{\dfrac}$
If $\frac{x-1}{3}=k$ and $k=3$, what is the value of $x$ ?
If $\frac{a}{b}=2$, what is the value of $\frac{4 b}{a}$ ?
If $t>0$ and $t^{2}-4=0$, what is the value of $t$ ?
If $5 x+6=10$, what is the value of $10 x+3$ ?
$$ \sqrt{2 k^{2}+17}-x=0 $$ If $k>0$ and $x=7$ in the equation above, what is the value of $k$ ?
If $3 r=18$, what is the value of $6 r+3$ ?
If $\frac{5}{x}=\frac{15}{x+20}$, what is the value of $\frac{x}{5}$ ?
$$ x^{3}\left(x^{2}-5\right)=-4 x $$ If $x>0$, what is one possible solution to the equation above?
If $\frac{7}{9} x-\frac{4}{9} x=\frac{1}{4}+\frac{5}{12}$, what is the value of $x ?$
If $\frac{3}{5} w=\frac{4}{3}$, what is the value of $w$ ?
If $\frac{a-b}{b}=\frac{3}{7}$, which of the following must also be true?
$$ \sqrt{x-a}=x-4 $$ If $a=2$, what is the solution set of the equation above?
If $\frac{t+5}{t-5}=10$, what is the value of $t$ ?
$$ \sqrt{k+2}-x=0 $$ In the equation above, $k$ is a constant. If $x=9$, what is the value of $k$ ?
$$ 2(p+1)+8(p-1)=5 p $$ What value of $p$ is the solution of the equation above?
If $3(c+d)=5$, what is the value of $c+d$ ?
Note: Figure not drawn to scale. On $\overline{P S}$ above, $P Q=R S$. What is the length of $\overline{P S}$ ?
If $\sqrt{x}+\sqrt{9}=\sqrt{64}$, what is the value of $x$ ?
$$ \frac{2}{3} t=\frac{5}{2} $$ What value of $t$ is the solution of the equation above?
$$ 2(5 x-20)-(15+8 x)=7 $$ What value of $x$ satisfies the equation above?
If $2 x+8=16$, what is the value of $x+4$ ?
In the equation $(a x+3)^{2}=36, a$ is a constant. If $x=-3$ is one solution to the equation, what is a possible value of $a$ ?
$$ 3 x+x+x+x-3-2=7+x+x $$ In the equation above, what is the value of $x$ ?
$$ x^{2}+x-12=0 $$ If $a$ is a solution of the equation above and $a>0$, what is the value of $a$ ?
$$ x+1=\frac{2}{x+1} $$ In the equation above, which of the following is a possible value of $x+1$ ?
$x-\frac{1}{2} a=0$ If $x=1,$ in the equation above, what is the value of $a$?
In planning maintenance for a city's infrastructure, a civil engineer estimates that, starting from the present, the population of the city will decrease by 10 percent every 20 years. If the present population of the city is 50,000 , which of the following expressions represents the engineer's estimate of the population of the city $t$ years from now?
2 C $\quad$ Explanation
3 2 $\quad$ Explanation
4 C $\quad$ Explanation
5 C $\quad$ Explanation
6 D $\quad$ Explanation
7 C $\quad$ Explanation
8 1,2 $\quad$ Explanation
9 2 $\quad$ Explanation
10 D $\quad$ Explanation
11 B $\quad$ Explanation
12 D $\quad$ Explanation
13 D $\quad$ Explanation
14 D $\quad$ Explanation
15 1.2 $\quad$ Explanation
16 B $\quad$ Explanation
17 7 $\quad$ Explanation
18 C $\quad$ Explanation
19 A $\quad$ Explanation
20 3.75 $\quad$ Explanation
21 31 $\quad$ Explanation
22 8 $\quad$ Explanation
23 C $\quad$ Explanation
24 D $\quad$ Explanation
25 3 $\quad$ Explanation
26 B $\quad$ Explanation
27 2 $\quad$ Explanation
28 D $\quad$ Explanation
1. (Test1/Q 1/No Calculator)
If $\frac{x-1}{3}=k$ and $k=3$, what is the value of $x$ ?
A) 2
B) 4 C) 9 D) 10 |
2. (Test1/Q 8/No Calculator)
If $\frac{a}{b}=2$, what is the value of $\frac{4 b}{a}$ ?
A) 0
B) 1 C) 2 D) 4 |
3. (Test1/Q 16/No Calculator)
If $t>0$ and $t^{2}-4=0$, what is the value of $t$ ?
4. (Test2/Q 1/No Calculator)
If $5 x+6=10$, what is the value of $10 x+3$ ?
A) 4
B) 9 C) 11 D) 20 |
5. (Test2/Q 5/No Calculator)
$$ \sqrt{2 k^{2}+17}-x=0 $$ If $k>0$ and $x=7$ in the equation above, what is the value of $k$ ?
A) 2
B) 3 C) 4 D) 5 |
6. (Test $3 / \mathrm{Q} 2 /$ No Calculator)
If $3 r=18$, what is the value of $6 r+3$ ?
A) 6
B) 27 C) 36 D) 39 |
7. (Test $3 / Q 5 /$ No Calculator)
If $\frac{5}{x}=\frac{15}{x+20}$, what is the value of $\frac{x}{5}$ ?
A) 10
B) 5 C) 2 D) $\frac{1}{2}$ |
8. (Test $3 / \mathrm{Q} 16 /$ No Calculator)
$$ x^{3}\left(x^{2}-5\right)=-4 x $$ If $x>0$, what is one possible solution to the equation above?
9. (Test3/Q $17 /$ No Calculator)
If $\frac{7}{9} x-\frac{4}{9} x=\frac{1}{4}+\frac{5}{12}$, what is the value of $x ?$
10. (Test $3 / Q 7 /$ Calculator)
If $\frac{3}{5} w=\frac{4}{3}$, what is the value of $w$ ?
A) $\frac{9}{20}$
B) $\frac{4}{5}$ C) $\frac{5}{4}$ D) $\frac{20}{9}$ |
11. (Test $4 / Q 6 /$ No Calculator)
If $\frac{a-b}{b}=\frac{3}{7}$, which of the following must also be true?
A) $\frac{a}{b}=-\frac{4}{7}$
B) $\frac{a}{b}=\frac{10}{7}$ C) $\frac{a+b}{b}=\frac{10}{7}$ D) $\frac{a-2 b}{b}=-\frac{11}{7}$ |
12. (Test4/Q 9/No Calculator)
$$ \sqrt{x-a}=x-4 $$ If $a=2$, what is the solution set of the equation above?
A) $\{3,6\}$
B) $\{2\}$ C) $\{3\}$ D) $\{6\}$ |
13. (Test4/Q 10/No Calculator)
If $\frac{t+5}{t-5}=10$, what is the value of $t$ ?
A) $\frac{45}{11}$
B) 5 C) $\frac{11}{2}$ D) $\frac{55}{9}$ |
14. (Test5/Q 5/No Calculator)
$$ \sqrt{k+2}-x=0 $$ In the equation above, $k$ is a constant. If $x=9$, what is the value of $k$ ?
A) 1
B) 7 C) 16 D) 79 |
15. (Test5/Q $17 /$ No Calculator)
$$ 2(p+1)+8(p-1)=5 p $$ What value of $p$ is the solution of the equation above?
16. (Test5/Q 4/Calculator)
If $3(c+d)=5$, what is the value of $c+d$ ?
A) $\frac{3}{5}$
B) $\frac{5}{3}$ C) 3 D) 5 |
17. (Test5/Q 33/Calculator)
Note: Figure not drawn to scale. On $\overline{P S}$ above, $P Q=R S$. What is the length of $\overline{P S}$ ?
18. (Test6/Q 9/No Calculator)
If $\sqrt{x}+\sqrt{9}=\sqrt{64}$, what is the value of $x$ ?
A) $\sqrt{5}$
B) 5 C) 25 D) 55 |
19. (Test $6 / Q 13 /$ No Calculator)
$$
2 x^{2}-4 x=t
$$
In the equation above, $t$ is a constant. If the equation has no real solutions, which of the following could be the value of $t$ ?
|
20. (Test6/Q 17/No Calculator)
$$ \frac{2}{3} t=\frac{5}{2} $$ What value of $t$ is the solution of the equation above?
21. (Test $6 / \mathrm{Q} 32 /$ Calculator)
$$ 2(5 x-20)-(15+8 x)=7 $$ What value of $x$ satisfies the equation above?
22. (Test7/Q $16 /$ No Calculator)
If $2 x+8=16$, what is the value of $x+4$ ?
23. (Test7/Q 6/Calculator)
In the equation $(a x+3)^{2}=36, a$ is a constant. If $x=-3$ is one solution to the equation, what is a possible value of $a$ ?
A) $-11$
B) $-5$ C) $-1$ D) 0 |
24. (Test8/Q 1/No Calculator)
$$ 3 x+x+x+x-3-2=7+x+x $$ In the equation above, what is the value of $x$ ?
A) $-\frac{5}{7}$
B) 1 C) $\frac{12}{7}$ D) 3 |
25. (Test8/Q 16/No Calculator)
$$ x^{2}+x-12=0 $$ If $a$ is a solution of the equation above and $a>0$, what is the value of $a$ ?
26. (Test $8 / Q 8 /$ Calculator)
$$ x+1=\frac{2}{x+1} $$ In the equation above, which of the following is a possible value of $x+1$ ?
A) $1-\sqrt{2}$
B) $\sqrt{2}$ C) 2 D) 4 |
27. (Test8/Q $32 /$ Calculator)
$x-\frac{1}{2} a=0$ If $x=1,$ in the equation above, what is the value of $a$?
28. (Test3/Q 28/Calculator)
In planning maintenance for a city's infrastructure, a civil engineer estimates that, starting from the present, the population of the city will decrease by 10 percent every 20 years. If the present population of the city is 50,000 , which of the following expressions represents the engineer's estimate of the population of the city $t$ years from now?
A) $50,000(0.1)^{20 t}$
B) $50,000(0.1)^{\frac{t}{20}}$ C) $50,000(0.9)^{20 t}$ D) $50,000(0.9)^{\frac{t}{20}}$ |
Answer
1 D $\quad$ Explanation2 C $\quad$ Explanation
3 2 $\quad$ Explanation
4 C $\quad$ Explanation
5 C $\quad$ Explanation
6 D $\quad$ Explanation
7 C $\quad$ Explanation
8 1,2 $\quad$ Explanation
9 2 $\quad$ Explanation
10 D $\quad$ Explanation
11 B $\quad$ Explanation
12 D $\quad$ Explanation
13 D $\quad$ Explanation
14 D $\quad$ Explanation
15 1.2 $\quad$ Explanation
16 B $\quad$ Explanation
17 7 $\quad$ Explanation
18 C $\quad$ Explanation
19 A $\quad$ Explanation
20 3.75 $\quad$ Explanation
21 31 $\quad$ Explanation
22 8 $\quad$ Explanation
23 C $\quad$ Explanation
24 D $\quad$ Explanation
25 3 $\quad$ Explanation
26 B $\quad$ Explanation
27 2 $\quad$ Explanation
28 D $\quad$ Explanation
Post a Comment