$\quad$ |
|
1 | ( (2017/Myanmar/q07b) ) A binary operation $\odot$ on $R$ is defined by $x \odot y=y^{x}+2 x^{y} y^{x}-x^{y}$. Evaluate $(2 \odot 1) \odot 1$. (5 marks)
|
2 | ( 2011 ) Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $a \odot b=\frac{a^{2}+b^{2}}{2}-a b$ for $a, b \in R$. Find the values of $3 \odot 1$ and $(3 \odot 1) \odot 4$. Find the values of $x$ such that $x \odot 2=x+2$. (5 marks)
|
3 | ( 2012 ) Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by$$x \odot y=\frac{4 x^{2}+y^{2}}{2}-2 x y \quad \text { for } x, y \in R$$ Find the values of $3 \odot 2$ and $(3 \odot 2) \odot 16$. If $a$ and $b$ are two real numbers such that $a \odot b=8$, find the relation between $a$ and $b$. (5 marks)
|
4 | ( 2013 ) Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $a \odot b=2 a b-a+4 b$ for $a, b \in R .$ Find the values of $3 \odot(2 \odot 4)$ and $(3 \odot 2) \odot 4 .$ If $x \odot y=2$ and $x \neq-2$, find the numerical value of $y \odot y$. (5 marks)
|
5 | ( 2014 ) The operation $\odot$ is defined by $x \odot y=x^{2}-4 x y-5 y^{2}.$ Calculate $5 \odot 4$. Find the possible values of $x$ such that $x \odot 2=28$. $\qquad\mbox{ (5 marks)}$
|
6 | ( 2014 ) Given that $a \odot b=a^{2}+\frac{6 a}{b}+4$, find the value of $(3 \odot 9) \odot 1$. Solve the equation $3 \odot \mathrm{y}=22$. $\qquad\mbox{ (5 marks)}$
|
7 | ( (2016/Myanmar/q07b) ) A binary operation $\odot$ on $R$ is defined by $x \odot y=x^{2}-2 x y+2 y^{2}$. Find $(3 \odot 2) \odot 4$. If $(3 \odot k)-(k \odot 1)=k+1$, find the values of $k$. (5 marks)
|
8 | ( (2017/FC/q07b) ) Let $\mathrm{R}$ be the set of real numbers and a binary operation $\odot$ on $\mathrm{R}$ be defined by $a \odot b=2 a b-a+4 b$ for $a, b \in R$. Find the values of $3 \odot(2 \odot 4)$ and $(3 \odot 2) \odot 4$. If $x \odot y=2$ and $x \neq-2$, find the $\begin{array}{ll}\text { numerical value of y } \mathrm{y} & \text { y. } & (5 \mathrm{marks})\end{array}$
|
9 | ( 2011 ) A binary operation $\odot$ on the set of integers is defined by $a \odot b=$ the remainder when $(a+2 b)$ is divided by 4. Find $(1 \odot 3) \odot 2$ and $1 \odot(3 \odot 2)$. Is $\odot$ commutative? Why? (5 marks)
|
10 | ( 2011 ) Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $x \odot y=x y-x+y$ for $x, y \in R$. Find the values of $(2 \odot 1) \odot 3$ and $2 \odot(1 \odot 3)$. Is this binary operation associative? Prove your answer. (5 marks)
|
11 | ( 2011 ) Let $R$ be the set of real numbers and a binary operation $\odot$ on $R$ be defined by $a \odot b=a b+a+b$ for $a, b \in R$. Find the values of $2 \odot(3 \odot 4)$ and (2 \odot 3) $\odot 4$. Is this binary operation associative? Prove your answer. (5 marks)
|
12 | ( (2019/FC/q07a) ) A binary operation $\odot$ on the.set $\mathrm{R}$ of real numbers is defined by $\mathrm{x} \odot \mathrm{y}=\mathrm{x}^{2}+\mathrm{y}^{2}$. Evaluate $[(1 \odot 3) \odot 2]+[1 \odot(3 \odot 2)]$. Show that $x \odot(y \odot x)=(x \odot y) \odot x.$ (5 marks)
|
13 | ( 2012 ) Given $(3 a-b) \odot(a+3 b)=a^{2}-3 a b+4 b^{2}$, evaluate $4 \odot 8$. (5 marks)
|
14 | ( 2010 ) The binary operation $\odot$ on $R$ is defined by $a \odot b=(2 a+3 b) b$ where $a, b \in R$.Calculate $6 \odot(3 \odot 4)$.Find the values of $y$ if $2 \odot y=95$.$\text{ (5 marks)}$
|
15 | ( 2010 ) A binary operation $\odot$ on $R$ is defined by $a \odot b=a^{2}-2 a b+b^{2}$.Show that $\odot$ is commutative.If $(3 \odot k)-(2 k \odot 1)=k-28$, find the values of $k$.$\text{ (5 marks)}$
|
16 | ( 2011 ) A binary operation $\odot$ is defined on $R$ by $a \odot b=a(2 a+3 b)$, for all real numbers $a$ and $b$. Find $(1 \odot 1) \odot 2$ and $1 \odot(1 \odot 2)$. Find the values of $b$ such that $b \odot 3=26$. (5 marks)
|
17 | ( 2011 ) Let $J^{+}$be the set of all positive integers. A binary operation $\odot$ on the set $J^{+}$is defined by $a \odot b=a^{2}+a b+b^{2}$. Prove that the binary operation is commutative. Find the value of $x$ such that $2 \odot x=12$. (5 marks)
|
18 | ( 2013 ) The binary operation $\odot$ on $R$ is defined by $x \odot y=x^{2}+3 x y-2 y^{2}$. Find $2 \odot 1$. If $x \odot 2=-13$, find the values of $x$. (5 marks)
|
19 | ( 2013 ) Giving that $a \odot b=a^{2}+\frac{6 a}{b}+4, b \neq 0$. Find the value of $(4 \odot 8) \odot 1$ and solve the equation $x \odot 3=12$. (5 marks)
|
20 | ( 2013 ) If $a \odot b=a^{2}-3 a b+2 b^{2}$, find $(-2 \odot 1) \odot 4$. Find $p$ if $(p \odot 3)-(5 \odot p)=3 p-17$. (5 marks)
|
21 | ( 2014 ) The operation $\odot$ on the set $N$ of natural numbers is defined by $x \odot y=x^{y}$. Find the value of a such that $2 \odot a=(2 \odot$ 3) $\odot 4$. Find also $b$ such that $2\odot(3\odot b)=512.$ (5 marks)
|
22 | ( 2010 ) The operation $\odot$ is defined by $x \odot y=x^{2}+x y-3 y^{2}, x, y \in R$.If $4 \odot x=17$, find the possible values of $x$.Find also $(2 \odot 1) \odot 3$.$\text{ (5 marks)}$
|
23 | ( 2010 ) The operation $\odot$ is defined by $x \odot y=x^{2}+3 x y-y^{2}$ for $x, y \in R$.Find the possible values of $x$ such that $x \odot 2=3 .$ Find also $(5 \odot 4) \odot 2$.$\text{ (5 marks)}$
|
24 | ( 2013 ) The operation $\odot$ is defined by $x \odot y=x^{2}+x y-3 y^{2}, x, y \in R$. If $4 \odot x=17$. find the possible values of $x$. Find also $(2 \odot 1) \odot 3$. (5 marks)
|
25 | ( 2013 ) A binary operation $\odot$ on $R$ is defined by $a \odot b=a^{2}-2 a b+2 b^{2}$ Find $(3 \odot 2) \odot 4 .$ If $(3 \odot k)-(k \odot 1)=k+1$, find the value of $k$. (5 marks)
|
$\quad$ |
|
1 | $4,(x \neq 0, y \neq 0)$
|
2 | $2 ; 2 ; x=0$ (or) 6
|
3 | $3 \odot 2=8 ;(3 \odot 2) \odot 16=0,2 a-b=\pm 4$
|
4 | $3 \odot(2 \odot 4)=297 ;(3 \odot 2) \odot 4=135 ; y \odot y=2$
|
5 | $-135, x=-4$ (or) $12 $
|
6 | $319, y=2 \quad$
|
7 | $k=2$ or 3
|
8 | 279,135,2
|
9 | $3;3;$ No
|
10 | 5;13;No $(2\odot 1)\odot 3\not= 2\odot (1\odot 3)$
|
11 | 59; 59; Yes $(a\odot b)\odot c=a\odot (b\odot c)$
|
12 | 274
|
13 | $4 \odot 8=8$
|
14 | $16416 ;-\frac{19}{3}, 5$
|
15 | $-4,3$
|
16 | $80 ; 26 ; 2$ (or) $-\frac{13}{2}$
|
17 | $x=2$
|
18 | $2 \odot 1=8 ; x=-5($ or $)-1$
|
19 | $(4 \odot 8) \odot 1=671 ; x=-4$ (or) 2
|
20 | $(-2 \odot 1) \odot 4=32 ; p=5$ (or) $-2 \quad$
|
21 | $a=12, b=2.$
|
22 | $\frac{1}{3}, 1 ;-9$
|
23 | $-7,1 ; 5171$
|
24 | $x=\frac{1}{3}$ (or) $1 ;(2 \odot 1) \odot 3=-9 \quad$
|
25 | $(3 \odot 2) \odot 4=17 ; k=3$ (or) 2
|
إرسال تعليق