Loading [MathJax]/jax/output/HTML-CSS/jax.js

Binomial (Relation between coefficients)


Let a0,a1,a2,,an be the  coefficients of the expansion of (1+x)n, and define uk=ak1ak1+ak,k=1,2,,n.
Show that uk+1uk=1n+1, for k=1,2,,n1.
Hence deduce that uk+uk+2=2uk+1 for k=1,2,,n2.

, Proof: 

Since ak=nCk,
ak=n(n1)(nk+1)1×2××kak+1=n(n1)(nk+1)(nk)1×2××k×(k+1).
(2)÷(1):ak+1ak=nkk+1, for k=0,1,,(n1).
Moreover 1uk=ak+ak+1ak=1+ak+1ak=1+nkk+1=k+1+nkk+1=n+1k+1, and hence uk=k+1n+1.
Now uk+1uk=(k+1)+1n+1k+1n+1=1n+1.
Thus u1,u2,,un is AP with common difference 1n+1.
Therefore uk+2uk+1=uk+1uk implies
 uk+uk+2=2uk+1.

Post a Comment

أحدث أقدم