Let a0,a1,a2,…,an be the coefficients of the expansion of (1+x)n, and define uk=ak−1ak−1+ak,k=1,2,…,n.
Show that uk+1−uk=1n+1, for k=1,2,…,n−1.
Hence deduce that uk+uk+2=2uk+1 for k=1,2,…,n−2.
, Proof:
Since ak=nCk,ak=n(n−1)⋯(n−k+1)1×2×⋯×kak+1=n(n−1)⋯(n−k+1)(n−k)1×2×⋯×k×(k+1).
(2)÷(1):ak+1ak=n−kk+1, for k=0,1,…,(n−1).
Moreover 1uk=ak+ak+1ak=1+ak+1ak=1+n−kk+1=k+1+n−kk+1=n+1k+1, and hence uk=k+1n+1.
Now uk+1−uk=(k+1)+1n+1−k+1n+1=1n+1.
Thus u1,u2,…,un is AP with common difference 1n+1.
Therefore uk+2−uk+1=uk+1−uk implies
uk+uk+2=2uk+1.
إرسال تعليق