1 | (IB/s1/2019/November/Paper2/q4)
[Maximum mark: 7] The following diagram shows a right-angled triangle, $\mathrm{ABC}$, with $\mathrm{AC}=10 \mathrm{~cm}, \mathrm{AB}=6 \mathrm{~cm}$ and $\mathrm{BC}=8 \mathrm{~cm}$. The points $\mathrm{D}$ and $\mathrm{F}$ lie on $[\mathrm{AC}]$. [BD] is perpendicular to [AC]. $B E F$ is the arc of a circle, centred at $A$. The region $R$ is bounded by [BD]. [DF] and are BEF.
|
2 | (IB/sl/2019/May/paper2tz2/qu)
[Maximum mark: 7] $\mathrm{OAB}$ is a sector of the circle with centre $\mathrm{O}$ and radius $r$, as shown in the following diagram. The angle $\mathrm{AOB}$ is $\theta$ radians, where $0 < \theta < \frac{\pi}{2}$. The point $\mathrm{C}$ lies on $\mathrm{OA}$ and $\mathrm{OA}$ is perpendicular to $\mathrm{BC}$.
|
3 | (IB/s1/2018/November/Paper1/q1)
[Maximum mark: 6] The following diagram shows a circle with centre $\mathrm{A}$ and radius $6 \mathrm{~cm}$. The points $\mathrm{B}, \mathrm{C}$, and $\mathrm{D}$ lie on the circle, and $\mathrm{B} \hat{\mathrm{A}} \mathrm{C}=2$ radians.
|
4 | (IB/s1/2018/May/paper1tz2/q4)
[Maximum mark: 7] The following diagram shows a circle with centre $\mathrm{O}$ and radius $r \mathrm{~cm}$. The points $\mathrm{A}$ and $\mathrm{B}$ lie on the circumference of the circle, and $\mathrm{AOB}=\theta$. The area of the shaded sector $\mathrm{AOB}$ is $12 \mathrm{~cm}^{2}$ and the length of are $\mathrm{AB}$ is $6 \mathrm{~cm}$. Find the value of $r$. |
5 | (IB/s1/2018/May/paper2tz1/q3)
[Maximum mark: 6] The diagram shows a circle, centre $O$, with radius $4 \mathrm{~cm}$. Points $A$ and $B$ lie on the circumference of the circle and $\mathrm{AOOB}=\theta$, where $0 \leq \theta \leq \pi$.
|
6 | (IB/s1/2017/November/Paper1/q4)
[Maximum mark: 7 ] The following diagram shows triangle $\mathrm{ABC}$, with $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm}$, and $\mathrm{ABC}=\frac{\pi}{3}$.
Find the exact perimeter of this shape. [3] |
7 | (IB/s1/2017/May/paper2tz1/q5)
[Maximum mark: 7] The following diagram shows the chord $[\mathrm{AB}]$ in a circle of radius $8 \mathrm{~cm}$, where $\mathrm{AB}=12 \mathrm{~cm}$. Find the area of the shaded segment. |
8 | (IB/s1/2017/May/paper2tz2/q1)
[Maximum mark: 6] The following diagram shows a circle with centre $\mathrm{O}$ and radius $40 \mathrm{~cm}$. The points $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ are on the circumference of the circle and $\mathrm{AOC}=1.9$ radians.
|
9 | (IB/s1/2016/November/Paper2/q3)
[Maximum mark: 7] The following diagram shows a circle, centre $\mathrm{O}$ and radius $r \mathrm{~mm}$. The circle is divided into five equal sectors. One sector is $\mathrm{OAB}$, and $\mathrm{AO} \mathrm{B}=\theta$.
The area of sector $\mathrm{AOB}$ is $20 \pi \mathrm{mm}^{2}$.
|
10 | (IB/s1/2016/May/paper1tz2/q5)
[Maximum mark: 8] The following diagram shows a triangle $\mathrm{ABC}$ and a sector $\mathrm{BDC}$ of a circle with centre $\mathrm{B}$ and radius $6 \mathrm{~cm}$. The points $\mathrm{A}, \mathrm{B}$ and $\mathrm{D}$ are on the same line. $\mathrm{AB}=2 \sqrt{3} \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$, area of triangle $\mathrm{ABC}=3 \sqrt{3} \mathrm{~cm}^{2}, \mathrm{ABC}$ is obtuse.
|
11 | (IB/s1/2015/November/Paper2/q1)
[Maximum mark: 6] The following diagram shows a circle with centre $\mathrm{O}$ and radius $3 \mathrm{~cm}$. Points $\mathrm{A}, \mathrm{B}$, and $\mathrm{C}$ lie on the circle, and $\mathrm{AOOC}=1,3$ radians.
|
12 | (IB/s1/2015/May/paper1tz1/q2)
[Maximum mark: 5 ] The following diagram shows a circle with centre $\mathrm{O}$ and a radius of $10 \mathrm{~cm}$. Points $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$. lie on the circle. Angle $\mathrm{AOB}$ is $1.2$ radians.
|
13 | (IB/sl/2015/May/paper2tz2/q10)
[Maximum mark: 16] The following diagram shows a square $\mathrm{ABCD}$, and a sector $\mathrm{OAB}$ of a circle centre $\mathrm{O}$, radius $r$. Part of the square is shaded and labelled $R$. $A\hat OB=\theta,$ where $0.5\le\theta < \pi$.
(i) Write down the area of the sector when $\theta=\alpha$. (ii) Hence find $\alpha$.
|
Answer
[1](a) 0.927 (b) 8.05
[2](a) Show (b) $A=\frac{1}{2} r^{2} \sin \theta \cos \theta$ (c) $\theta=.830$
[3](a) Area $=36$ (b) Perimeter $=12 \pi$
[4] $r=4 \mathrm{~cm}$
[5](a) $A=8 \theta-8 \sin \theta$ (b) $\theta=2.27$
[6](a) Show (b) $11+\frac{7}{2} \pi$
[7] Area $=22.5$
[8](a) 76 (b) 156 (c) 1520
[9](a) $\theta=\frac{2 \pi}{5}$ (b) $r=10$ (c) $11.8$
[10](a) $\frac{5 \pi}{6}\left(150^{\circ}\right), \frac{\pi}{6}\left(30^{\circ}\right)$ (b) $3 \pi$
[11](a) $l=3.9$ (b) area $=9 \pi-5.85$
[12](a) $12$ (b) $\quad P=8+20 \pi$
[13](a) Show (b) (i) $\frac{1}{2} \alpha r^{2}$ (ii) $\alpha=0.511$ (c) $1.31<\beta<2.67$
Post a Comment