In the diagram $\overrightarrow{O P}=2 \mathbf{b},
\overrightarrow{O S}=3 \mathbf{a}, \overrightarrow{S R}=\mathbf{b}$ and
$\overrightarrow{P Q}=\mathbf{a}$. The lines $O R$ and $Q S$ intersect at $X$.
(a) Find $\overrightarrow{O Q}$ in terms of $\mathbf{a}$ and
$\mathbf{b}$. $[1]$
(b) Find $\overrightarrow{Q S}$ in terms of $\mathbf{a}$ and
$\mathbf{b}$. [1]
(c) Given that $\overrightarrow{Q X}=\mu \overrightarrow{Q
S}$, find $\overrightarrow{O X}$ in terms of $\mathbf{a}, \mathbf{b}$ and
$\mu$. $[1]$
(d) Given that $\overrightarrow{O X}=\lambda
\overrightarrow{O R}$, find $\overrightarrow{O X}$ in terms of $\mathbf{a},
\mathbf{b}$ and $\lambda$. [1]
(e) Find the value of $\lambda$ and of $\mu$. $[3]$
Post a Comment