Processing math: 100%

Differentiation (Normal line/ Approximation)

\CIE\0606\2020\w\paper 12 \no 7
A curve has equation y=ln(3x25)2x+1 for 3x2>5.
(a) Find the equation of the normal to the curve at the point where x=2.
(b) Find the approximate change in y as x increases from 2 to 2+h, where h is   small.


Solution

(a) When x=2,y=ln(3×25)22+1=0.
y=ln(3x25)2x+1dydx=(2x+1)ddx(ln(3x25))ln(3x25)ddx(2x+1)(2x+1)2=(2x+1)6x3x25ln(3x25)(2)(2x+1)2
When x=2,
dydx=(22+1)6(2)3(2)25ln(3(2)25)(2)(2(2)+1)2=6222+1=24627
the gradient of normal line is (22+1)62.
Normal line equation: y=(22+1)62(x2).
(b) Δy=dydx×Δx=24627h.
End of Solution



End of Solution







Post a Comment

Previous Post Next Post