HomeCIE/0606/2020/w/12Q Differentiation (Normal line/ Approximation) byDr Shwe Kyaw —9:50 AM 0 \CIE\0606\2020\w\paper 12 \no 7A curve has equation y=ln(3x2−5)2x+1 for 3x2>5.(a) Find the equation of the normal to the curve at the point where x=√2.(b) Find the approximate change in y as x increases from √2 to √2+h, where h is small. ∗∗∗∗∗∗ Solution ∗∗∗∗∗ (a) When x=√2,y=ln(3×2−5)2√2+1=0. y=ln(3x2−5)2x+1dydx=(2x+1)ddx(ln(3x2−5))−ln(3x2−5)ddx(2x+1)(2x+1)2=(2x+1)6x3x2−5−ln(3x2−5)(2)(2x+1)2 When x=√2, dydx=(2√2+1)6(√2)3(√2)2−5−ln(3(√2)2−5)(2)(2(√2)+1)2=6√22√2+1=24−6√27 ∴ the gradient of normal line is −(2√2+1)6√2. Normal line equation: y=−(2√2+1)6√2(x−√2). (b) Δy=dydx×Δx=24−6√27h. ∗∗∗∗∗∗ End of Solution ∗∗∗∗∗ ∗∗∗∗∗∗ End of Solution ∗∗∗∗∗
Post a Comment