(CIE 0606/2021/m/22/Q9) The function $\mathrm{f}$ is defined by $\mathrm{f}(x)=\dfrac{\sqrt{4 x^{2}-1}}{2 x}$ for $0.5 \leqslant x \leqslant 1.5$.
The diagram shows a sketch of $y=\mathrm{f}(x)$.
(a) (i) It is given that $\mathrm{f}^{-1}$ exists. Find the domain and range of $\mathrm{f}^{-1}$.
(ii) Find an expression for $\mathrm{f}^{-1}(x)$.
(b) The function $g$ is defined by $g(x)=\mathrm{e}^{x^{2}}$ for all real $x$. Show that $\operatorname{gf}(x)=\mathrm{e}^{\left(1-\dfrac{a}{b x^{2}}\right)}$, where $a$ and $b$ are integers.
*********************
*********math solution*************
$\begin{array}{ll}&f(x)=\dfrac{\sqrt{4 x^{2}-1}}{2 x}, \cdot 5 \leqslant x \leqslant 1.5 \\&\text { When } x=.5,y=\dfrac{\sqrt{4(.5)^{2}-1}}{2(.5)}=0 \\&x=1.5, y=\dfrac{\sqrt{4(1.5)^{2}-1}}{2(1.5)}=\dfrac{2 \sqrt{2}}{3} \\&\text { (a) Doman of } f^{-1}: 0 \leqslant x \leqslant \dfrac{2 \sqrt{2}}{3} \\&\text { Range of } \bar{f}^{-1}: 0.5 \leqslant f^{-1} \leqslant 1.5 \\&\text { (ii) Let } \begin{array}[t]{rl}f^{-1}(x) &=y \cdot \\\text { Then } x &=f(y)=\dfrac{\sqrt{4 y^{2}-1}}{2 y} \\2 x y &=\sqrt{4 y^{2}-1} \\4 x^{2} y^{2} &=4 y^{2}-1 \\4 y^{2}-4 x^{2} y^{2} &=1 \\y^{2}\left(4-4 x^{2}\right) &=1\\y &=\dfrac{1}{\sqrt{4-4 x^{2}}} \\\therefore f^{-1}(x)&=\dfrac{1}{\sqrt{4-4 x^{2}}} \end{array}\end{array}$
Post a Comment