(CIE 0606/2021 March/12/Q8) (a) (i) Show that $\sin x\tan x+\cos x=\sec x$. [3]
(ii) Hence solve the equation $\sin\dfrac{\theta}{2}\tan\dfrac{\theta}{2}+\cos\dfrac{\theta}{2}=4,$ for $0\le \theta\le4\pi$, where $\theta$ is in radians. [4]
(b) Solve the equation $\cot(y+38^{\circ})=\sqrt{3}$ for $0\le y\le 360^{\circ}.$ [3]
(a) (i) $\begin{array}[t]{rll}\sin x \tan x+\cos x &=\sin x \cdot \dfrac{\sin x}{\cos x}+\cos x \\&=\dfrac{\sin ^{2} x+\cos ^{2} x}{\cos x} \\&=\dfrac{1}{\cos x}=\sec x . \end{array}$
Post a Comment