1. (2011/june/paper01/q3)
Given that y=e2xsin3x
(a) find dy dx
(b) show that d2y dx2=2dy dx−9y+6e2xcos3x
2. (2012/jan/paper01/q5)
Differentiate with respect to x
(a) y=x2ex
(b) y=(x3+2x2+3)5
3. (2012/june/paper02/q2)
Given that x=t3+4 and y=1−t+5t2
(a) find
(i) dx dt
(ii) dy dt (2)
(b) Find dy dx in terms of t
4. (2012/ june / paper02/q4)
Differentiate with respect to x
(a) 1x2
(b) 1(2x+1)2
(c) 11−cos2x
5. (2013/jan/ paper02/q4)
Differentiate with respect to x
(a) 3xsin5x
(b) e2x4−3x2
6. (2014/jan/paper01/q3)
Differentiate with respect to x
(a) e3x(5x−7)2
(b) cos2xx+9
7. (2015/ june / paper01/q2)
Given that y=4x2e2x
(a) find dy dx
(b) hence show that xdy dx=2y(1+x)
8. (2016/jan/paper01/q1)
f(x)=3x3+2sinx−4x2 where x≠
(a) Find f′(x)
(b) Find ∫f(x)dx
9. (2016/jan/paper02/q4)
Given that y=e2x√x+1
show that dy dx=e2x(4x+5)2√x+1
10. (2016/june/paper02/q4)
Differentiate with respect to x
e2xcos3x
11. ( 2018/jan/paper02/q5)
Given that y=2e∗(3x2−6)
show that d2y dx2−2dy dx+y=12ex
12. (2018/ june / paper02 /q2 )
Differentiate with respect to x
(a) e3xcos2x
(b) 2et(2x2−1) (3)
13. (2019/ june / paper02 /q6 )
(a) Given that y=(4x−3)e2∗
(i) find dy dx
(ii) show that (4x−3)dy dx=(8x−2)y
(b) Differentiate sin5x(x−3)2 with respect to x
Answer
1.(a) dydx=2e2xsin3x+3e2xcos3x (b) Show
2.(a)dydx=x2ex+2xex (b) dydx=5(x3+2x2+3)4(3x2+4x)
3.(a)(i) dxdt=3t2 (ii) dydt=−1+10t (b) dydx=10t−13t2
4.(a) 2x3 (b) 4(2x+1)3 (c) −2cosxsin3x
5.(a) 3sin5x+15xcos5x (b) 2e2x(4−3x2)−e2x(−6x)(4−3x2)2
6.(a) 3e3x(5x−7)2+10e3x(5x−7) (b) −2sin(2x)(x+9)−cos2x(x+9)2
7. (a) dydx=8xe2x+8x2e2x(b) Show
8. (a)f′(x)=9x2+2cosx+8x−3 (b) 3x44−2cosx−4x−1−1+C
9. show
10. 2e2xcos3x−3e2xsin3x
11. Show
12. $\begin{aligned}
13. (a) (i) dydx=4e2x+2(4x−3)e2x (ii) Show (b) dydx=−2(x−3)−3sin5x+5(x−3)−2cos5x
Post a Comment