Processing math: 100%

Further Pure Math (Differentiation)

 1. (2011/june/paper01/q3)

Given that y=e2xsin3x

(a) find dy dx

(b) show that d2y dx2=2dy dx9y+6e2xcos3x


2. (2012/jan/paper01/q5)

Differentiate with respect to x

(a) y=x2ex

(b) y=(x3+2x2+3)5


3. (2012/june/paper02/q2)

Given that x=t3+4 and y=1t+5t2

(a) find

(i) dx dt

(ii) dy dt (2)

(b) Find dy dx in terms of t


4. (2012/ june / paper02/q4)

Differentiate with respect to x

(a) 1x2

(b) 1(2x+1)2

(c) 11cos2x


5. (2013/jan/ paper02/q4)

Differentiate with respect to x

(a) 3xsin5x

(b) e2x43x2


6. (2014/jan/paper01/q3)

Differentiate with respect to x

(a) e3x(5x7)2

(b) cos2xx+9


7. (2015/ june / paper01/q2)

Given that y=4x2e2x

(a) find dy dx

(b) hence show that xdy dx=2y(1+x)


8. (2016/jan/paper01/q1)

f(x)=3x3+2sinx4x2 where x

(a) Find f(x)

(b) Find f(x)dx


9. (2016/jan/paper02/q4)

Given that y=e2xx+1

show that dy dx=e2x(4x+5)2x+1


10. (2016/june/paper02/q4)

Differentiate with respect to x

e2xcos3x


11. ( 2018/jan/paper02/q5)

Given that y=2e(3x26)

show that d2y dx22dy dx+y=12ex


12. (2018/ june / paper02 /q2 )

Differentiate with respect to x

(a) e3xcos2x

(b) 2et(2x21) (3)


13. (2019/ june / paper02 /q6 )

(a) Given that y=(4x3)e2

(i) find dy dx

(ii) show that (4x3)dy dx=(8x2)y

(b) Differentiate sin5x(x3)2 with respect to x




Answer

1.(a) dydx=2e2xsin3x+3e2xcos3x (b) Show

2.(a)dydx=x2ex+2xex (b) dydx=5(x3+2x2+3)4(3x2+4x)

3.(a)(i) dxdt=3t2 (ii) dydt=1+10t (b) dydx=10t13t2

4.(a) 2x3 (b) 4(2x+1)3 (c) 2cosxsin3x

5.(a) 3sin5x+15xcos5x (b) 2e2x(43x2)e2x(6x)(43x2)2

6.(a) 3e3x(5x7)2+10e3x(5x7) (b) 2sin(2x)(x+9)cos2x(x+9)2

7. (a) dydx=8xe2x+8x2e2x(b) Show

8. (a)f(x)=9x2+2cosx+8x3 (b) 3x442cosx4x11+C

9. show

10. 2e2xcos3x3e2xsin3x

11. Show

12. $\begin{aligned}

13. (a) (i) dydx=4e2x+2(4x3)e2x (ii) Show (b) dydx=2(x3)3sin5x+5(x3)2cos5x


Post a Comment

Previous Post Next Post