$\newcommand{\inside}[2]{\begin{array}{rcl}\leftarrow-- & \circ\!\frac{\qquad\qquad\qquad\qquad}{}\!\circ & --\rightarrow\\ & #1\qquad\qquad\qquad\qquad #2 & \end{array}}$
$\newcommand{\insideeq}[2]{\begin{array}{rcl}\leftarrow--&\bullet\!\frac{\qquad\qquad\qquad\qquad}{}\!\bullet & --\rightarrow\\& #1\qquad\qquad\qquad\qquad #2&\end{array}}$
$\newcommand{\outside}[2]{\begin{array}{rcl}\leftarrow\!\!\!\frac{\qquad\qquad}{}\!\circ & ---- &\circ\!\frac{\qquad\qquad}{}\!\!\!\rightarrow\\#1& & #2\end{array}}$
$\newcommand{\outsideeq}[2]{\begin{array}{rcl}\leftarrow\!\!\!\frac{\qquad\qquad}{}\!\bullet & ---- &\bullet\!\frac{\qquad\qquad}{}\!\!\!\rightarrow\\#1& & #2\end{array}}$
1. (2015/Myanmar /q9a)
Group (2015-2019)
Use a graphical method to find the solution set of $x^{2} \leq \frac{4}{5}(x+3)$, and illustrate it on the number line. $(5 \mathrm{~m} \mathrm{i} \mathrm{ks})$
2. (2015/FC /q9a)
Find the solution set of the inequation $3 x^{2}<x^{2}-x+3$, by graphical method . and illustrate it on the number line.. $(5$ marks)
3. (2016/Myanmar /q9a)
Find the solution set in $R$ of the inequation $(x-6)^{2}>x$ by graphical method and illustrate it on the number line. (5 marks)
4. (2016/FC /q9a)
Use a sketch graph to obtain the solution set of $\frac{15-4 x}{4} \leq x^{2}$ and illustrate it on the number line. (5 marks)
5. (2017/Myanmar /q9a)
Find the solution set in $R$ of $-7+(2 x+1)^{2} \geq 6 x$ by algebraic method and illustrate it on the number line. (5 marks)
Q9(a) Solution
Q9(a) Solution
6. (2017/FC /q9a)
Find the solution set of the inequation $12-25 x+12 x^{2} \leq 0$ by graphical method and illustrate it on the number line. $\quad$ (5 marks)
7. (2018/Myanmar /q9a)
Use a graphical method to find the solution set of the inequation $2 x(x-1)<3-x$ and illustrate it on the number line. (5 marks)
Click for Solution
Click for Solution
8. (2018/FC /q9a)
Find the solution set of the inequation $5 x^{2}<18 x+8$, by graphical method and illustrate it on the number line. (5 marks)
9. (2019/Myanmar /q8a)
Find the solution set in $\mathrm{R}$ of the inequation $\mathrm{x}^{2}-3 \mathrm{x}+2 \leq 0$ by algebraic method and illastrate it on the number line. $\quad$ (5 marks) Click for Solution
10. (2019/FC /q8a )
Find the solution set in $\mathrm{R}$ of the inequation $\mathrm{x}^{2}-2 \mathrm{x} \leq 0$ by algebraic method and illustrate it on the number line. (5 marks)Click for Solution 8(a)
Find the solution set in $\mathrm{R}$ of the inequation $\mathrm{x}^{2}-2 \mathrm{x} \leq 0$ by algebraic method and illustrate it on the number line. (5 marks)Click for Solution 8(a)
Answer (2015-2019)
1. $\{x|-\frac 65\le x\le 2\}$
2. $\{x|-\frac 32<x<1\}$
3. $\{x \mid x<4$ or $x>9\}$
4. $\left\{x \mid x \leqslant-\frac{5}{2}\right.$ (or) $\left.x \geqslant \frac{3}{2}\right\}$
5. $\left\{x \mid x \leqslant-1\right.$ or $\left.x \geqslant \frac{3}{2}\right\}$
6. $\{x|\dfrac{3}{4}\le x\le \dfrac{4}{3}\}$
7. $\left\{x \mid-1<x<\frac{3}{2}\right\}$
8. $\left\{x \mid-\frac{2}{5}<x<4\right\}$
9. $\{x|1\le x\le 2\}$
10. {$x|0\le x\le 2$}
Group (2014)
1. Find the solution set in $R$ of the inequation $3 x^{2}<x^{2}-x+3$ and illustrate it on the number line. (5 marks)
2. Find the solution set of the inequation $x^{2}+6 x \geq 0$ and illustrate it on the number line. (5 marks)
3. Find the solution set in $R$ for the inequation $(x+1)(x+3)<11 x-7$ and illustrate it on the number line. (5 marks)
4. Find the solution set of the inequation $x^{2} \leq \frac{9 x+5}{2}$ by algebraic method and illustrate it on the number line. (5 marks)
5. Finu the solution set in $R$ for the inequation $(2 x+1)^{2}<4(2 x+1)$ by algebraic method and illustrate it on the number line. (5 marks)
6. Use a graphical method, to find the solution set of the inequation $x^{2}+5 x-6<0$ and illustrate it on the number line. (5 marks)
7. Use a graphical method to find the solution set of the inequation $2 x^{2}-7 x+3 \geq 0$ and illustrate it on the number line. (5 marks)
8. Find the solution set in $R$ of the inequation $x^{2}>\frac{9 x+5}{2}$ by graphical method and illustrate it on the number line. (5 marks)
9. Use a graphical method to find the solution set of $x^{2} \leq \frac{4}{5}(x+3)$. (5 marks)
10. Find the solution set in $R$ of the inequation $(2 x-3)^{2} \leq 25$ by graphical method and illustrate it on the number line. (5 marks)
11. Find the solution set in $R$ of the inequation $2-x-x^{2}>0$ by graphical method and illustrate it on the number line. (5 marks)
Answer (2014)
1. $\left\{x \mid-\frac{3}{2}<x<1\right\}$
2. $\{x \mid x \leq-6$ or $x \geq 0\}$
3. $\{x \mid 2<x<5\}$,
4. $\left\{x \mid-\frac{1}{2} \leq x \leq 5\right\}$
5. $\left\{x \mid-\frac{1}{2}<x<\frac{3}{2}\right\}$
6. $\{x \mid-6<x<1\}$,
7. $\left\{x \mid x \leq \frac{1}{2}\right.$ or $\left.x \geq 3\right\}$
8. $\left\{x \mid x<-\frac{1}{2}\right.$ or $\left.x>5\right\}$
9. $\left\{x \mid-\frac{6}{5} \leq x \leq 2\right\}$
10. $\{x \mid-1 \leq x \leq 4\}$
11. $\{x |-2<x<1\}$
Group (2013)
1. Find the solution set in $R$ of the inequation $8 x+2 \leq 3 x^{2}-1$. (5 marks)
2. Find the solution set of the inequation 12 $5 x-2 x^{2} \geq 0$ and illustrate it on the number line. (5 marks)
3. Find the solution set of the inequation $x(2 x-3) \leq\left(x^{2}-2\right)$ and illustrate it on the number line. (5 marks)
4. Find the solution set in $R$ of the inequation $(2-x)^{2}-16 \geq 0$ and illustrate it on the number line. (5 marks)
5. Find the solution set of the inequation $(3 x-5)^{2}-2 \frac{1}{4} \geq 0$ and illustrate it on the number line. (5 marks)
6. Find the solution set in $R$ of the inequation $(2 x-1)(x+4)>18$ by graphical method and illustrate it on the number line. (5 marks)
7. Find the solution set in $R$ of the inequation $4(2 x-3)^{2} \geq x^{2}$ and illustrate it on the number line. (5 marks)
8. Find the solution set in $R$ of the inequation $(1+x)(2-x) \geq-10$ and illustrate it on the number line. (5 marks)
9. Find the solution set in $R$ of the inequation $(x+2)^{2} \leq 3(x+8)$ and illustrate it on the number line. (5 marks)
10. Find the solution set of the ineqliation $(x+2)^{2}>2 x+7$ by graphical method. (5 marks)
11. The solution set in $R$ of the inequation $(3 x+1)^{2} \leq 49$ by algebraic method and illustrate it on the number line. (5 marks)
Answer (2013)
1. $\left\{x \mid x \leq-\frac{1}{3}\right.$ (or) $\left.x \geq 3\right\}$
2. $\left\{x \mid-4 \leq x \leq \frac{3}{2}\right\}$,
3. $\{x \mid 1 \leq x \leq 2\}$,
4. $\{x \mid x \leq-2$ or $x \geq 6\}$,
5. $\left\{x \mid x \leq \frac{7}{6}\right.$ or $\left.x \geq \frac{13}{6}\right\}$,
6. $\left\{x \mid x<-\frac{11}{2}\right.$ or $\left.x>2\right\}$,
7. $\left\{x \mid x \leq \frac{6}{5}\right.$ or $\left.x \geq 2\right\}$
8. $\{x \mid-3 \leq x \leq 4\}$,
9. $\{x \mid-5 \leq x \leq 4\}$,
10. $\{x \mid x<-3$ or $x>1\}$,
11. $\left\{x \mid-\frac{8}{3} \leq x \leq 2\right\}$,
Group (2012)
$\quad\;\,$ | $\,$ | |
---|---|---|
1. | Find the solution set of $(2 x-1)^{2} \geq 9$ and illustrate it on the number line. (5 marks) | |
2. | Find the solution set in $R$ of the inequation $2-3 x \geq 5 x^{2}$ and illustrate it on the number line. (5 marks) | |
3. | Find the solution set of the inequation $12+5 x-2 x^{2}>0$, by graphical method and illustrate it on the number line. (5 marks) | |
4. | Use a graphical method, te find the solution set of the inequation $4 x^{2}-12 x-16>0$ and illustrate it on the rumber line. (5 marks) | |
5. | Find the solution set of the inequation $(2 x+1)(3 x-1) \geq 14$ and illustrate it on the number line. (5 marks) | |
6. | Find the solution set in $R$ of the inequation $(x-2)(5 x-4)+1 \leq 0$ and illustrate it on the number line. (5 marks) | |
7. | Find the solution set in $R$ of the inequation $3 x^{2}-5 x+4>3-x^{2}$ by graphical method and illustrate it on the number line. (5 marks) | |
8. | Find the solution set of the inequation $2+3 x>5 x^{2}$ by graphical method and illustrate it on the number line. (5 marks) | |
9. | Find the solution set of the inequation $8 x-3 \geq 3 x^{2}+2$ by algebraic method and illustrate it on number line. (5 marks) | |
10. | Find the solution set of the inequation $18 x^{2}>45 x-18$ and illustrate it on the number line. (5 marks) | |
11. | Find the solution set of the inequation $\frac{1}{4}(x+1)^{2}>x+4$ and illustrate it on the number line. (5 marks) |
Answer (2012)
$\quad$ | $\,$ | |
---|---|---|
1. | $\left\{x \mid x\leq -1 \mbox{ (or) } x\geq 2 \right\}$ $\outsideeq{-1}{2}$ | |
2. | $\left\{x \mid-1 \leq x \leq \frac{2}{5}\right\}$ $\insideeq{-1}{\frac 25}$ | |
3. | $\left\{x \mid-\frac{3}{2}< x < 4\right\}$ $\inside{-\frac 32}{4}$ | |
4. | $\{x \mid x< -1$ (or) $x>4\}$ $\outside{-1}{4}$ | |
5. | $\left\{x \mid x \leq-\frac{5}{3}\right.$ or $\left.x \geq \frac{3}{2}\right\} $ $\outsideeq{-\frac 53}{\frac 32}$ | |
6. | $\left\{x \mid 1 \leq x \leq \frac{9}{5}\right\}$ $\insideeq{1}{\frac 95}$ | |
7. | $\left\{x \mid x< \frac{1}{4}\right.$ (or) $\left.x>1\right\}$ $\outside{\frac 14}{1}$ | |
8. | $\left\{x \mid-\frac{2}{5}< x< 1\right\}$ $\inside{-\frac 25}{1}$ | |
9. | $\left\{x \mid 1 \leq x \leq \frac{5}{3}\right\}$ $\insideeq{1}{\frac 53}$ | |
10. | $\left\{x \mid x< \frac{1}{2}\right.$ (or) $\left.x>2\right\}$ $\outside{\frac 12}{2}$ | |
11. | $\{x \mid x< -3$ (or) $x>5\}$ $\outside{-3}{5}$ |
Group (2011)
$\quad\;\,$ | $\,$ | |
---|---|---|
1. | Find the solution set of $2 x^{2}-x-21>0$ and illustrate it on the number line. $\mbox{ (5 marks)}$ | |
2. | Find the solution set in $R$ of the inequation $2 x^{2}<7 x+4$ and illustrate it on the number line. $\mbox{ (5 marks)}$ | |
3. | Find the solution set in $R$ of the inequation $(4-7 x)(7-4 x) \leq 0$ and illustrate it on the number line. $\mbox{ (5 marks)}$ | |
4. | Find the solution set of the inequation $x^{2}>9$. $\mbox{ (5 marks)}$ | |
5. | Find the solution set in $R$ for the inequation $(x+1)^{2}>1$. $\mbox{ (5 marks)}$ | |
6. | Find the solution set of the inequation $(2 x+3)(x+2)>0$. $\mbox{ (5 marks)}$ | |
7. | Find the solution set of the inequation $(3-4 x)(4-3 x) \geq 0$ by algebraic method and illustrate it on the number line. $\mbox{ (5 marks)}$ | |
8. | Find the solution set in $R$ of the inequation $(3-8 x)(5-4 x) \leq 0$ by algebraic method and illustrate it on the number line. $\mbox{ (5 marks)}$ | |
9. | Find the solution set of the inequation $3 x^{2}< x^{2}-x+3$, by graphical method. $\mbox{ (5 marks)}$ | |
10. | Find the solution set of the inequation $12+x-x^{2} \geq 0$, by graphical method. $\mbox{ (5 marks)}$ | |
11. | Use graphical method to find the solution set of $(x+2)^{2}>2 x+7$. $\mbox{ (5 marks)}$ |
Answer (2011)
$\quad\;\,$ | $\,$ | |
---|---|---|
1. | $\left\{x \mid x< -3\right.$ (or) $\left.x>\frac{7}{2}\right\}$ $\outside{-3}{\frac 72}$ | |
2. | $\left\{x \mid-\frac{1}{2}< x< 4\right\}$ $\inside{-\frac 12}{4}$ | |
3. | $\left\{x \mid \frac{4}{7} \leq x \leq \frac{7}{4}\right\}$ $\insideeq{\frac 47}{\frac 74}$ | |
4. | $\{x \mid x< -3$ (or) $x>3\}$ $\outside{-3}{3}$ | |
5. | $\{x \mid x< -2$ (or) $x>0\}$ $\outside{-2}{0}$ | |
6. | $\left\{x \mid x< -2\right.$ (or) $\left.x>-\frac{3}{2}\right\}$ $\outside{-2}{\frac 32}$ | |
7. | $\left\{x \mid x \leq \frac{3}{4}\right.$ (or) $\left.x \geq \frac{4}{3}\right\}$ $\outsideeq{\frac 34}{\frac 43}$ | |
8. | $\left\{x \mid \frac{3}{8} \leq x \leq \frac{5}{4}\right\}$ $\insideeq{\frac 38}{\frac 54}$ | |
9. | $\left\{x \mid-\frac{3}{2}< x< 1\right\}$ $\inside{-\frac 32}{1}$ | |
10. | $\{x \mid-3 \leq x \leq 4\}$ $\inside{-3}{4}$ | |
11. | $\{x \mid x< -3$ (or) $x> 1 \}$ $\outside{-3}{1}$ |
Group (2010)
$\quad\;\,$ | $\,$ | |
---|---|---|
1. | Find the solution set in $R$ for the inequation $x^{2}+5 x>6$. $\text{ (5 marks)}$ | |
2. | Find the solution set in $R$ for which $x^{2} \geq \frac{4}{3}(x+5)$. $\text{ (5 marks)}$ | |
3. | Find the solution set of an inequation $2 x(2-x) \leq 3(x-2)$, and illustrate it on the number line. $\text{ (5 marks)}$ | |
4. | Find the solution set in $R$ for which $(x+2)^{2}>2 x+7$. $\text{ (5 marks)}$ | |
5. | Find the solution set of the inequation $(2+x)(3-2 x) \leq 2 x+1$. $\text{ (5 marks)}$ | |
6. | Find the solution set in $R$ for the inequation $x^{2}+2 x>24$ and illustrate it on number line. $\text{ (5 marks)}$ | |
7. | Find the solution set in $R$ for the inequation $12 x^{2} \geq 10-7 x$. Illustrate it on the number line. $\text{ (5 marks)}$ | |
8. | Find the solution set in $R$ of the inequation $(x+2)^{2} \leq 3(x+8)$ and illustrate it on the number line. $\text{ (5 marks)}$ | |
9. | Use the graphical method to find the solution set of the inequation $x^{2}-5 x+6>0$. $\text{ (5 marks)}$ | |
10. | Use the graphical method to find the solution set of the inequation $x^{2}-7 x+10< 0$. $\text{ (5 marks)}$ | |
11. | Find the solution set of the inequation $8 x+3< 3 x^{2}$ by algebraic method and illustrate it on the number line. $\text{ (5 marks)}$ |
Answer (2010)
$\quad\;\,$ | ||
---|---|---|
1. | $\{x \mid x< -6$ (or) $x>1\}$ $\outside{-6}{1}$ | |
2. | $\left\{x \mid x \leq-2\right.$ (or) $\left.x \geq \frac{10}{3}\right\}$ $\outsideeq{-2}{\frac{10}{3}}$ | |
3. | $\left\{x\mid x\leq-\frac{3}{2}\right.$ (or) $\left.x \geq 2\right\}$ $\outsideeq{-\frac 32}{2}$ | |
4. | $\{x \mid x< -3$ (or) $x>1\}$ $\outside{-3}{1}$ | |
5. | $\left\{x \mid x \leq-\frac{5}{2}\right.$ (or) $\left.x \geq 1\right\}$ $\outsideeq{-\frac 52}{1}$ | |
6. | $\{x \mid x< -6$ (or) $x>4\}$ $\outside{-6}{4}$ | |
7. | $\left\{x \mid x \leq-\frac{5}{4}\right.$ (or) $\left.x \geq \frac{2}{3}\right\}$ $\outsideeq{-\frac 54}{\frac 23}$ | |
8. | $\{x \mid-5 \leq x \leq 4\}$ $\insideeq{-5}{4}$ | |
9. | $\{x \mid x< 2$ (or) $x>3\}$ $\outside{2}{3}$ | |
10. | $\{x \mid 2< x< 5\} $ $\inside{2}{5}$ | |
11. | $\left\{x \mid x< -\frac{1}{3}\right.$ (or) $\left.x>3\right\}$ $\outside{-\frac 13}{3}$ |
Post a Comment